Speaker
Description
The recent developments in our understanding of the chemical composition, the ionisation equilibrium and the dynamics of protoplanetary discs has led to the conclusion that magnetised disc wind (MDW) are probably playing an important role in shaping the long term evolution of these objects. Most of our understanding of these winds comes from global direct numerical simulations which include complex microphysics and which explore only a very limited subspace of parameters. Hence, it is very difficult to draw firm conclusions about the long-term evolution of discs subject to MDW.
In this contribution, I will present a systematic exploration of MDW solutions, which can then be used in secular models to predict the evolution of a disc, in a way similar to the "alpha disc" model. I will also discuss the solutions topology (top/down symmetry, midplane/surface accretion layers, laminar stress, etc...) which have often been mis-interpreted in the literature.