Speaker
Description
Laminar outflows driven by large-scale magnetic fields likely play an important role in the evolution and dispersal of protoplanetary disks, and in setting the conditions for planet formation. Extending our previous non-ideal MHD model with radiative transfer as well as a simplified thermochemistry, we follow the dual aim of studying the influence of thermal driving and, at the same time, laying the foundation for synthetic observations. Our simulations develop magnetocentrifugal outflows that are primarily driven by magnetic tension forces. As a consequence, the mass-loss rate in the wind only increases moderately when including thermochemical effects. For typical field magnitudes, magnetic dissipation heating remains sub-dominant compared with thermochemical and irradiation heating. We, moreover, follow the evolution of the entrained vertical magnetic flux and find it to diffuse out of the disk on secular timescales as a result of non-ideal MHD. Based on line-radiative post processing, we demonstrate that velocity spectra and moment 1 maps of O and CS (as well as other molecules) show significant, potentially observable differences between models with and without outflows. In particular the shape of the line profiles, and velocity asymmetries in the moment 1 maps could enable the identification of outflows emanating from the surface of a disk.