Speaker
Description
The snowlines of various volatiles are often associated with dust evolution in protoplanetary discs and may be identified in observations due to their impact on dust properties. In the vicinity of snowlines icy mantles of dust grains sublimate, which can lead to a different regime of dust growth. Dynamical effects of icy grains crossing snowlines may be reflected in the distribution of volatiles in the gas phase.
In this work, we present the FEOSAD model of protostellar disc with dust evolution, updated to include evolution of icy mantles. The chemical part of the model accounts for time-dependent absorption and desorption of main disc volatiles (H$_2$O, CO$_2$, CH$_4$, and CO) on two evolving populations of dust grains: small and grown dust. This 2D hydrodynamic code allows to consider the feedback of ice mantles on dust evolution through variable fragmentation velocity.
We discuss if the dynamical effects when calculating the snowline positions are important for dust growth. We analyse the impact of ice mantles on dust evolution in protostellar discs and discuss the role of ices in the process of planet formation.