The protostar TW Hydra features the best studied and one of the most unusual protoplanetary discs. Its dust disc has a cliff-like rollover at 52 AU which coincides with a suspected sub-Neptune mass planet recently detected as an azimuthally elongated AU-scale excess in ALMA 1.3 mm continuum (Tsukagoshi +19). Here we build detailed models of dust growth, dynamics and synthetic disc emission to...
Magnetically driven disk winds (MDWs) are one of the promising mechanisms of dispersal processes of protoplanetary disks (Suzuki et al. 2010, Bai 2013). When the MDWs play a key role, the gaseous component of protoplanetary disks evolves in a different manner from that of the classical viscous evolution. As a result, the subsequent planet formation is also affected by the MDWs. In this work,...
Recently performed nested-grid, high-resolution hydrodynamic and radiation-hydrodynamics simulations of gas and particle dynamics in the vicinity of Mars- to Earth-mass planetary embryos (Popovas et al 2018MNRAS.479.5136P and 2019MNRAS.482L.107P) have provided quantitatively robust estimates of accretion rates for planet embryos formed inside a pressure trap. The simulations extended from the...
The snowlines of various volatiles are often associated with dust evolution in protoplanetary discs and may be identified in observations due to their impact on dust properties. In the vicinity of snowlines icy mantles of dust grains sublimate, which can lead to a different regime of dust growth. Dynamical effects of icy grains crossing snowlines may be reflected in the distribution of...
Planets are born in the mid-plane of accretion discs around young protostars. This process takes place most likely in weakly ionised regions, where the evolution of the environment is driven by internal turbulence and the gas flow is not laminar but has stochastic components. Turbulence can be generated purely hydrodynamically via different instabilities, like the vertical shear instability...
The streaming instability has been identified as a promising mechanism to concentrate solids and promote planetesimal formation in the midplane of disks. It has been demonstrated in Squire & Hopkins (2018) that a related settling (and streaming) instability (here SSI) occurs as particles sediment towards the midplane. However, the ability of the SSI to concentrate solids and generate...