Speaker
Description
Gravitational coupling between protoplanetary disks and embedded planets is an old problem ascending to the seminal studies of Goldreich & Tremaine (1980) and Lin & Papaloizou (1979). It is widely recognized as playing a key role in many areas of exoplanetary science: determination of the planetary architectures, disk evolution, planetary accretion, and so on. In this talk I will describe several key theoretical advances that took place in this field in recent years. They provide a better understanding of the ways in which density waves get excited in disks by planets, how they propagate through the disk, and how they dissipate, linearly and non-linearly, driving global disk evolution. I will particularly focus on recent advances in incorporating realistic disk thermodynamics in studies of disk-planet coupling, their impact on the numerical studies of this phenomenon, and the observational manifestations of massive planets in protoplanetary disks, including both scattered light imaging and recent ALMA observations of fine structures in disks.